Applications of Digital Twin Technology in Precision Farming (2017-2023): Insights and Sector-Specific Trends
Main Article Content
Abstract
Although there is an increasing interest in using digital twin technology (DTT) to improve agricultural practices, a holistic understanding of its cross-sectoral applications is limited. This lack of a holistic perspective is a critical gap that must be addressed for effective implementation and knowledge transfer. To address the gap, a meta-analysis of 24 peer-reviewed articles (2017-2023) was conducted to explore the applications, impact, and potential of DTT in various agricultural sectors. A systematic search was conducted in Lens, ProQuest, and ScienceDirect, focusing on crop production, aquaculture, and animal husbandry. The findings show that research focuses mostly on crop production with notable applications in robotics, artificial intelligence, and advanced sensor integration. On the other hand, research on the application of DTT in the forestry, livestock, and dairy sectors is scarce; thus, there is a need for further research in these areas. This study highlights the revolutionary role of DTT in enhancing agricultural sustainability and managing risks and recommends increased interdisciplinary cooperation to extend its usage in all agricultural sectors.


Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Adams, C. (2023). 7 Sectors of Agriculture. Agriculture Lore. https://www.agriculturelore.com/what-are-the-7-sectors-of-agriculture/
Ajao, A., Agajo, J., Kolo, J. G., Maliki, D., & Adegboye, b. A. (2017). Wireless Sensor Networks Based-Internet of Thing for Agro-Climatic Parameters Monitoring and Real-Time Data Acquisition. Journal of Asian Scientific Research, 7(6), 240—252. doi: 10.18488/journal.2.2017.76.240.252
Aleixandre, J. L., Aleixandre-Tudó, J. L., Bolaños-Pizarro, M., & Aleixandre-Benavent, R. (2015). Mapping the scientific research in organic farming: a bibliometric review. Scientometrics, 105(1), 295—309. doi: 10.1007/s11192-015-1677-4
Bechtsis, D., Moisiadis, V., Tsolakis, N., Vlachos, D., & Bochtis, D. (2019). Unmanned Ground Vehicles in Precision Farming Services: An Integrated Emulation Modelling Approach. Information and Communication Technologies in Modern Agricultural Development. doi: 10.1007/978-3-030-12998-9_13
Bikas, S. C., & Varghese, N. V. (2006). Research Capacity of the Higher Education Sector in Developing Countries. Semantic Scholar. https://api.semanticscholar.org/CorpusID:54965929
Birkás, M., Kalmár, T., Bottlik, L., & Takács, T. (2007). Importance of Soil Quality in Environment Protection. Semantic Scholar. https://api.semanticscholar.org/CorpusID:33737883
Bloch, V., Palosuo, T., Huitu, H., Ronkainen, A., Backman, J., Pussi, K., Suokannas, A., & Pastell, M. (2022). Towards a digital twin for optimal field management. agriRxiv.
Botín-Sanabria, D. M., Mihaita, A.-S., Peimbert-García, R. E., Ramírez-Moreno, M. A., Ramírez-Mendoza, R. A., & Lozoya-Santos, J. d. (2022). Digital Twin Technology Challenges and Applications: A Comprehensive Review. MDPI Open Access Journals, 14(6). doi: 10.3390/rs14061335
BUCHANAN, S. A. (1930). Animal Husbandry. Nature, 126, 722—723. doi: 10.1038/126722b0
Chaudhry, A. A., Mumtaz, R., Hassan Zaidi, S. M., Tahir, M. A., & Muzammil School, S. H. (2020). Internet of Things (IoT) and Machine Learning (ML) enabled Livestock Monitoring. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). doi: 10.1109/HONET50430.2020.9322666
Cutini, M., Bisaglia, C., Brambilla, M., Bragaglio, A., Pallottino, F., Assirelli, A., Romano, E., Montaghi, A., Leo, E., Pezzola, M., Maroni, C., & Menesatti, P. (2023). A Co-Simulation Virtual Reality Machinery Simulator for Advanced Precision Agriculture Applications. Agriculture, 13(8). doi: 10.3390/agriculture13081603
De Rango, F., Palmieri, N., Santamaria, A. F., & Potrino, G. (2017). A simulator for UAVs management in agriculture domain. 2017 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 21980—22012. doi: 10.23919/SPECTS.2017.8046780
Defraeye, T., Tagliavini, G., Wu, W., Prawiranto, K., Schudel, S., Assefa Kerisima, M., Verboven, P., & Bühlmann, A. (2019). Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling, 149, 778—794. doi: 10.1016/j.resconrec.2019.06.002
Dineva, K., & Atanasova, T. (2022). Modeling and Simulation of Cloud-Based Digital Twins in Smart Farming. STEF92 Technology, 22(6.2). doi: 10.5593/sgem2022v/6.2/s25.31
Dorea, J. R., Bresolin, T., Ferreira, R. E., & Pereira, L. G. (2020). 383 Harnessing the Power of Computer Vision System to Improve Management Decisions in Livestock Operations. Journal of Animal Science, 98, 138—139. doi: 10.1093/jas/skaa278.255
Dunina, A. (2022). Economy, Digital Twins in Production as One of the Directions of Digital Transformation. Business Strategies, 10(5), 114—116. doi: 10.17747/2311-7184-2022-5-114-116
Fu, J., He, Y., & Cheng, F. (2023). Intelligent Cutting in Fish Processing: Efficient, High-quality, and Safe Production of Fish Products. Food and Bioprocess Technology, 17, 828—849. doi: 10.1007/s11947-023-03163-5
Gaydon, D., Singh, B., Wang, E., Poulton, P., Ahmad, B., Ahmed, F., Akhter, S., Ali, I., Amarasingha, R., Chaki, A., Chen, C., Choudhury, B., Darai, R., Das, A., Hochman, Z., Horan, H., Hosang, E., Kumar, P. V., Khan, A., & Lain. (2017). Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204, 52—75. doi: 10.1016/j.fcr.2016.12.015
Gebbers, R., & Adamchuk, V. I. (2010). Precision Agriculture and Food Security. American Association for the Advancement of Science, 327(5967), 828—831. doi: 10.1126/science.1183899
Geyskens, I., Krishnan, R., & Steenkamp, J.-B. E. (2008). A Review and Evaluation of Meta-Analysis Practices in Management Research. Journal of Management, 35(2), 393—419. doi: 10.1177/0149206308328501
Grewal, D., Puccinelli, N., & Monroe, K. B. (2018). Meta-analysis: integrating accumulated knowledge. Journal of the Academy of Marketing Science, 46, 9—30. doi: 10.1007/s11747-017-0570-5
Han, X., Lin, Z., Clark, C., Vucetic, B., & Lomax, S. (2022). AI-Based Digital Twin Model for Cattle Caring. Sensors, 22(19), 7118. doi: 10.3390/s22197118
Hassler, S. C., & Baysal-Gurel, F. (2019). Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy, 9(10). doi: 10.3390/agronomy9100618
Krupitzer, C., & Noack, T. (2022). DigiFoodTwin: Digital Biophysical Twins Combined with Machine Learning for Optimizing Food Processing. Engineering Proceedings, 42(19). doi: 10.3390/ECP2022-12623
Kuts, V., Otto, T., Bondarenko, Y., & Yu, F. (2020). Digital Twin: Collaborative Virtual Reality Environment for Multi-Purpose Industrial Applications. ASME International Mechanical Engineering Congress and Exposition. doi: 10.1115/IMECE2020-23390
Lan, H.-Y., Ubina, N. A., Cheng, S.-C., Lin, S.-S., & Huang, C.-T. (2023). Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Applied Sciences, 13(1), 141. doi: 10.3390/app13010141
Lan, H.-Y., Ubina, N., Cheng, S.-C., Lin, S.-S., & Huang, C.-T. (2023). Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Applied Sciences, 1(13), 141. doi: 10.3390/app13010141
Liaghat, S., & Balasundram, S. K. (2010). A Review: The Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural and Biological Sciences, 5(1). doi: 10.3844/ajabssp.2010.50.55
Madeira, R. N., Santos, P. A., Java, O., Priebe, T., Graça, E., Sárközi, E., Asprion, B., & Gómez, R. P.-B. (2022). Towards Digital Twins for Multi-Sensor Land and Plant Monitoring. Procedia Computer Science, 210, 45—52. doi: 10.1016/j.procs.2022.10.118
Mahmoud, A. S., & Hemdan, E. E.-D. (2021). Digital Twins Concepts, Challenges, and Future Trends. Handbook of Research on Developing Smart Cities Based on Digital Twins, 48—60. doi: 10.4018/978-1-7998-7091-3.ch003
Małgorzata, G. (2022). Digital twin technology — awareness, implementation problems and benefits. Engineering Management in Production and Services, 14(1), 63—77. doi:10.2478/emj-2022-0006
Melesse, T. Y., Bollo, M., Pasquale, V. D., Centro, F., & Riemma, S. (2022). Machine Learning-Based Digital Twin for Monitoring Fruit Quality Evolution. Procedia Computer Science, 200, 13—20. doi: 10.1016/j.procs.2022.01.200
Mishra, S. (2023). Internet of Things enabled deep learning methods using unmanned aerial vehicles enabled integrated farm management. Heliyon, 9(8). doi: 10.1016/j.heliyon.2023.e18659
Nasirahmadi, A., & Hensel, O. (2022). Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors, 22(2), 498. doi: 10.3390/s22020498
Neethirajan, S., & Kemp, B. (2021). Digital Twins in Livestock Farming. Animals, 11(4), 1008. doi: 10.3390/ani11041008
Paul, K., Chatterjee, S. S., Pai, P., Varshney, A., Juikar, S., Prasad, V., Bhadra, B., & Dasgupta, S. (2022). Viable smart sensors and their application in data-driven agriculture. Computers and Electronics in Agriculture, 198, 107096. doi: 10.1016/j.compag.2022.107096
Peladarinos, N., Piromalis, D., Cheimaras, V., Tserepas, E., Munteanu, R., & Papageorgas, P. (2023). Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review. Sensors, 23(16), 7128. doi: 10.3390/s23167128
Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. IEEE Access, 8, 21980—22012. doi: 10.1109/ACCESS.2020.2970143
Reyes Yanes, A., Abbasi, R., Martinez, P., & Ahmad, R. (n.d.). Digital Twinning of Hydroponic Grow Beds in Intelligent Aquaponic Systems. Sensors, 22(19), 7393. doi: 10.3390/s22197393
Reynoso, M. M., Bibangco, E. J., & Dumdumaya, C. E. (2023). An Extensive Survey on the Recent Applications of IoT in Rice Farming. Journal of Namibian Studies, 33, 1766—1790. doi: 10.59670/jns.v33i.3166
Rovito, S. M., Kaushik, D., & Aggarwal, S. D. (2021). The impact of international scientists, engineers, and students on U.S. Research Outputs and global competitiveness. MIT Science Policy Review, 15—25. doi: 10.38105/spr.v079rp249k
Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., & Bosnić, Z. (2019). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture, 161, 260—271. doi: 10.1016/j.compag.2018.04.001
Saccone, D., Saccone, D., & Deaglio, M. (2020). Poverty, emergence, boom and affluence: a new classification of economies. Economia Politica, 37(1), 267—306. doi: 10.1007/s40888-019-00166-4
Saraceni, L., Motoi, I. M., Nardi, D., & Ciarfuglia, T. A. (n.d.). AgriSORT: A Simple Online Real-time Tracking-by-Detection framework for robotics in precision agriculture. Arvix. doi: 10.48550/arXiv.2309.13393
Shaptala, S., & Myronova, N. (2023). Embedding Digital Twin Technology in Robotics. Management of Development of Complex Systems, 45—51. doi: 10.32347/2412-9933.2023.53.45-51
Shelby, L. B., & Vaske, J. J. (2008). Understanding Meta-Analysis: A Review of the Methodological Literature. Leisure Sciences, 30(2), 96—110. doi: 10.1080/01490400701881366
Silva, L., Rodríguez-Sedano, F., Baptista, P., & Coelho, J. (2023). The Digital Twin Paradigm Applied to Soil Quality Assessment: A Systematic Literature Review. Sensors, 23(2), 1007. doi: 10.3390/s23021007
Singh, M., Srivastava, R., Fuenmayor, E., Kuts, V., Qiao, Y., Murray, N., & Devine, D. (2022). Applications of Digital Twin across Industries: A Review. Applied Sciences, 12(11), 5727. doi: 10.3390/app12115727
Su, B., Bjørnson, F. O., Tsarau, A., Endresen, P. C., Ohrem, S. J., Føre, M., Fagertun, J. T., Klebert, P., Kelasidi, E., & Bjelland, H. V. (2023). Towards a holistic digital twin solution for real-time monitoring of aquaculture net cage systems. Marine Structures, 91, 103469. doi: 10.1016/j.marstruc.2023.103469
Sujatanagarjuna, A., Kia, S., Briechle, D. F., & Leiding, B. (2023). MushR: A Smart, Automated, and Scalable Indoor Harvesting System for Gourmet Mushrooms. Agriculture, 13(8), 1533. doi: 10.3390/agriculture13081533
Sundaram, S. M., Murgod, T. R., & M, S. (2022). Digital Twins Enabling Technologies, Including Artificial Intelligence, Sensors, Cloud, and Edge Computing. IGI Global eBooks, 88—101. doi: 10.4018/978-1-6684-5925-6.ch006
Suresh, N. (2022). Affective State Recognition in Livestock—Artificial Intelligence Approaches. Animals, 12(6), 759. doi: 10.3390/ani12060759
Tsolakis, N., Bechtsis, D., & Bochtis, D. (2019). AgROS: A Robot Operating System Based Emulation Tool for Agricultural Robotics. Agronomy, 9(7), 403. doi: 10.3390/agronomy9070403
Umachandran, K., Jurčić, I., Della Corte, V., & Ferdinand-James, D. S. (2019). Industry 4.0: The New Industrial Revolution. Big Data Analytics for Smart and Connected Cities, 138—156. doi: 10.4018/978-1-5225-6207-8.ch006
Verdouw, C., Tekinerdogan, B., Beulens, A., & Wolfert, S. (2021). Digital twins in smart farming. Agricultural Systems, 189, 103046. doi: 10.1016/j.agsy.2020.103046
Wissensforum. (2020). LAND.TECHNIK 2020: The Forum for Agricultural Engineering Innovations. VDI Verlag. VDI-Berichte, 2374. doi: 10.51202/9783181023747
Wolday, K., & Hruy, G. (2015). A Review on: Performance Evaluation of Crop Simulation Model (APSIM) in Prediction Crop Growth, Development and Yield in Semi Arid Tropics. Journal of Natural Sciences Research, 5, 34—39. https://api.semanticscholar.org/CorpusID:55415141
Zhang, Y., Zhang, Y., Gao, M., Dai, B., Kou, S., Wang, X., Fu, X., & Shen, W. (2023). Digital twin perception and modeling method for feeding behavior of dairy cows. Computers and Electronics in Agriculture, 214, 108181. doi: 10.1016/j.compag.2023.108181
Zhu, S., Lu, Q., & Xiang, Y. (2021). Research Progress, Hot Spots and Prospects in the Field of Agricultural Innovation in China: CiteSpace analysis based on 2258 articles. IEEE Explore, 37—40. doi: 10.1109/DCABES52998.2021.00016