Applications of Digital Twin Technology in Precision Farming (2017-2023): Insights and Sector-Specific Trends

Main Article Content

Rhyan de Loyola
Edreian Escototo
Michelle Espigol
Eddie De Paula Jr.

Abstract

Although there is an increasing interest in using digital twin technology (DTT) to improve agricultural practices, a holistic understanding of its cross-sectoral applications is limited. This lack of a holistic perspective is a critical gap that must be addressed for effective implementation and knowledge transfer. To address the gap, a meta-analysis of 24 peer-reviewed articles (2017-2023) was conducted to explore the applications, impact, and potential of DTT in various agricultural sectors. A systematic search was conducted in Lens, ProQuest, and ScienceDirect, focusing on crop production, aquaculture, and animal husbandry. The findings show that research focuses mostly on crop production with notable applications in robotics, artificial intelligence, and advanced sensor integration. On the other hand, research on the application of DTT in the forestry, livestock, and dairy sectors is scarce; thus, there is a need for further research in these areas. This study highlights the revolutionary role of DTT in enhancing agricultural sustainability and managing risks and recommends increased interdisciplinary cooperation to extend its usage in all agricultural sectors.

views Abstract Views: 93 times | download Downloaded: 0 times

Downloads

Download data is not yet available.

Article Details

How to Cite
de Loyola, R., Escototo, E., Espigol, M., & De Paula Jr. , E. (2023). Applications of Digital Twin Technology in Precision Farming (2017-2023): Insights and Sector-Specific Trends. Research Journal of Education, Science and Technology, 3(1). https://doi.org/10.63179/rjest.v3i1.53
Section
Articles

References

Adams, C. (2023). 7 Sectors of Agriculture. Agriculture Lore. https://www.agriculturelore.com/what-are-the-7-sectors-of-agriculture/

Ajao, A., Agajo, J., Kolo, J. G., Maliki, D., & Adegboye, b. A. (2017). Wireless Sensor Networks Based-Internet of Thing for Agro-Climatic Parameters Monitoring and Real-Time Data Acquisition. Journal of Asian Scientific Research, 7(6), 240—252. doi: 10.18488/journal.2.2017.76.240.252

Aleixandre, J. L., Aleixandre-Tudó, J. L., Bolaños-Pizarro, M., & Aleixandre-Benavent, R. (2015). Mapping the scientific research in organic farming: a bibliometric review. Scientometrics, 105(1), 295—309. doi: 10.1007/s11192-015-1677-4

Bechtsis, D., Moisiadis, V., Tsolakis, N., Vlachos, D., & Bochtis, D. (2019). Unmanned Ground Vehicles in Precision Farming Services: An Integrated Emulation Modelling Approach. Information and Communication Technologies in Modern Agricultural Development. doi: 10.1007/978-3-030-12998-9_13

Bikas, S. C., & Varghese, N. V. (2006). Research Capacity of the Higher Education Sector in Developing Countries. Semantic Scholar. https://api.semanticscholar.org/CorpusID:54965929

Birkás, M., Kalmár, T., Bottlik, L., & Takács, T. (2007). Importance of Soil Quality in Environment Protection. Semantic Scholar. https://api.semanticscholar.org/CorpusID:33737883

Bloch, V., Palosuo, T., Huitu, H., Ronkainen, A., Backman, J., Pussi, K., Suokannas, A., & Pastell, M. (2022). Towards a digital twin for optimal field management. agriRxiv.

Botín-Sanabria, D. M., Mihaita, A.-S., Peimbert-García, R. E., Ramírez-Moreno, M. A., Ramírez-Mendoza, R. A., & Lozoya-Santos, J. d. (2022). Digital Twin Technology Challenges and Applications: A Comprehensive Review. MDPI Open Access Journals, 14(6). doi: 10.3390/rs14061335

BUCHANAN, S. A. (1930). Animal Husbandry. Nature, 126, 722—723. doi: 10.1038/126722b0

Chaudhry, A. A., Mumtaz, R., Hassan Zaidi, S. M., Tahir, M. A., & Muzammil School, S. H. (2020). Internet of Things (IoT) and Machine Learning (ML) enabled Livestock Monitoring. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). doi: 10.1109/HONET50430.2020.9322666

Cutini, M., Bisaglia, C., Brambilla, M., Bragaglio, A., Pallottino, F., Assirelli, A., Romano, E., Montaghi, A., Leo, E., Pezzola, M., Maroni, C., & Menesatti, P. (2023). A Co-Simulation Virtual Reality Machinery Simulator for Advanced Precision Agriculture Applications. Agriculture, 13(8). doi: 10.3390/agriculture13081603

De Rango, F., Palmieri, N., Santamaria, A. F., & Potrino, G. (2017). A simulator for UAVs management in agriculture domain. 2017 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 21980—22012. doi: 10.23919/SPECTS.2017.8046780

Defraeye, T., Tagliavini, G., Wu, W., Prawiranto, K., Schudel, S., Assefa Kerisima, M., Verboven, P., & Bühlmann, A. (2019). Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling, 149, 778—794. doi: 10.1016/j.resconrec.2019.06.002

Dineva, K., & Atanasova, T. (2022). Modeling and Simulation of Cloud-Based Digital Twins in Smart Farming. STEF92 Technology, 22(6.2). doi: 10.5593/sgem2022v/6.2/s25.31

Dorea, J. R., Bresolin, T., Ferreira, R. E., & Pereira, L. G. (2020). 383 Harnessing the Power of Computer Vision System to Improve Management Decisions in Livestock Operations. Journal of Animal Science, 98, 138—139. doi: 10.1093/jas/skaa278.255

Dunina, A. (2022). Economy, Digital Twins in Production as One of the Directions of Digital Transformation. Business Strategies, 10(5), 114—116. doi: 10.17747/2311-7184-2022-5-114-116

Fu, J., He, Y., & Cheng, F. (2023). Intelligent Cutting in Fish Processing: Efficient, High-quality, and Safe Production of Fish Products. Food and Bioprocess Technology, 17, 828—849. doi: 10.1007/s11947-023-03163-5

Gaydon, D., Singh, B., Wang, E., Poulton, P., Ahmad, B., Ahmed, F., Akhter, S., Ali, I., Amarasingha, R., Chaki, A., Chen, C., Choudhury, B., Darai, R., Das, A., Hochman, Z., Horan, H., Hosang, E., Kumar, P. V., Khan, A., & Lain. (2017). Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204, 52—75. doi: 10.1016/j.fcr.2016.12.015

Gebbers, R., & Adamchuk, V. I. (2010). Precision Agriculture and Food Security. American Association for the Advancement of Science, 327(5967), 828—831. doi: 10.1126/science.1183899

Geyskens, I., Krishnan, R., & Steenkamp, J.-B. E. (2008). A Review and Evaluation of Meta-Analysis Practices in Management Research. Journal of Management, 35(2), 393—419. doi: 10.1177/0149206308328501

Grewal, D., Puccinelli, N., & Monroe, K. B. (2018). Meta-analysis: integrating accumulated knowledge. Journal of the Academy of Marketing Science, 46, 9—30. doi: 10.1007/s11747-017-0570-5

Han, X., Lin, Z., Clark, C., Vucetic, B., & Lomax, S. (2022). AI-Based Digital Twin Model for Cattle Caring. Sensors, 22(19), 7118. doi: 10.3390/s22197118

Hassler, S. C., & Baysal-Gurel, F. (2019). Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy, 9(10). doi: 10.3390/agronomy9100618

Krupitzer, C., & Noack, T. (2022). DigiFoodTwin: Digital Biophysical Twins Combined with Machine Learning for Optimizing Food Processing. Engineering Proceedings, 42(19). doi: 10.3390/ECP2022-12623

Kuts, V., Otto, T., Bondarenko, Y., & Yu, F. (2020). Digital Twin: Collaborative Virtual Reality Environment for Multi-Purpose Industrial Applications. ASME International Mechanical Engineering Congress and Exposition. doi: 10.1115/IMECE2020-23390

Lan, H.-Y., Ubina, N. A., Cheng, S.-C., Lin, S.-S., & Huang, C.-T. (2023). Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Applied Sciences, 13(1), 141. doi: 10.3390/app13010141

Lan, H.-Y., Ubina, N., Cheng, S.-C., Lin, S.-S., & Huang, C.-T. (2023). Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Applied Sciences, 1(13), 141. doi: 10.3390/app13010141

Liaghat, S., & Balasundram, S. K. (2010). A Review: The Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural and Biological Sciences, 5(1). doi: 10.3844/ajabssp.2010.50.55

Madeira, R. N., Santos, P. A., Java, O., Priebe, T., Graça, E., Sárközi, E., Asprion, B., & Gómez, R. P.-B. (2022). Towards Digital Twins for Multi-Sensor Land and Plant Monitoring. Procedia Computer Science, 210, 45—52. doi: 10.1016/j.procs.2022.10.118

Mahmoud, A. S., & Hemdan, E. E.-D. (2021). Digital Twins Concepts, Challenges, and Future Trends. Handbook of Research on Developing Smart Cities Based on Digital Twins, 48—60. doi: 10.4018/978-1-7998-7091-3.ch003

Małgorzata, G. (2022). Digital twin technology — awareness, implementation problems and benefits. Engineering Management in Production and Services, 14(1), 63—77. doi:10.2478/emj-2022-0006

Melesse, T. Y., Bollo, M., Pasquale, V. D., Centro, F., & Riemma, S. (2022). Machine Learning-Based Digital Twin for Monitoring Fruit Quality Evolution. Procedia Computer Science, 200, 13—20. doi: 10.1016/j.procs.2022.01.200

Mishra, S. (2023). Internet of Things enabled deep learning methods using unmanned aerial vehicles enabled integrated farm management. Heliyon, 9(8). doi: 10.1016/j.heliyon.2023.e18659

Nasirahmadi, A., & Hensel, O. (2022). Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors, 22(2), 498. doi: 10.3390/s22020498

Neethirajan, S., & Kemp, B. (2021). Digital Twins in Livestock Farming. Animals, 11(4), 1008. doi: 10.3390/ani11041008

Paul, K., Chatterjee, S. S., Pai, P., Varshney, A., Juikar, S., Prasad, V., Bhadra, B., & Dasgupta, S. (2022). Viable smart sensors and their application in data-driven agriculture. Computers and Electronics in Agriculture, 198, 107096. doi: 10.1016/j.compag.2022.107096

Peladarinos, N., Piromalis, D., Cheimaras, V., Tserepas, E., Munteanu, R., & Papageorgas, P. (2023). Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review. Sensors, 23(16), 7128. doi: 10.3390/s23167128

Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. IEEE Access, 8, 21980—22012. doi: 10.1109/ACCESS.2020.2970143

Reyes Yanes, A., Abbasi, R., Martinez, P., & Ahmad, R. (n.d.). Digital Twinning of Hydroponic Grow Beds in Intelligent Aquaponic Systems. Sensors, 22(19), 7393. doi: 10.3390/s22197393

Reynoso, M. M., Bibangco, E. J., & Dumdumaya, C. E. (2023). An Extensive Survey on the Recent Applications of IoT in Rice Farming. Journal of Namibian Studies, 33, 1766—1790. doi: 10.59670/jns.v33i.3166

Rovito, S. M., Kaushik, D., & Aggarwal, S. D. (2021). The impact of international scientists, engineers, and students on U.S. Research Outputs and global competitiveness. MIT Science Policy Review, 15—25. doi: 10.38105/spr.v079rp249k

Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., & Bosnić, Z. (2019). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture, 161, 260—271. doi: 10.1016/j.compag.2018.04.001

Saccone, D., Saccone, D., & Deaglio, M. (2020). Poverty, emergence, boom and affluence: a new classification of economies. Economia Politica, 37(1), 267—306. doi: 10.1007/s40888-019-00166-4

Saraceni, L., Motoi, I. M., Nardi, D., & Ciarfuglia, T. A. (n.d.). AgriSORT: A Simple Online Real-time Tracking-by-Detection framework for robotics in precision agriculture. Arvix. doi: 10.48550/arXiv.2309.13393

Shaptala, S., & Myronova, N. (2023). Embedding Digital Twin Technology in Robotics. Management of Development of Complex Systems, 45—51. doi: 10.32347/2412-9933.2023.53.45-51

Shelby, L. B., & Vaske, J. J. (2008). Understanding Meta-Analysis: A Review of the Methodological Literature. Leisure Sciences, 30(2), 96—110. doi: 10.1080/01490400701881366

Silva, L., Rodríguez-Sedano, F., Baptista, P., & Coelho, J. (2023). The Digital Twin Paradigm Applied to Soil Quality Assessment: A Systematic Literature Review. Sensors, 23(2), 1007. doi: 10.3390/s23021007

Singh, M., Srivastava, R., Fuenmayor, E., Kuts, V., Qiao, Y., Murray, N., & Devine, D. (2022). Applications of Digital Twin across Industries: A Review. Applied Sciences, 12(11), 5727. doi: 10.3390/app12115727

Su, B., Bjørnson, F. O., Tsarau, A., Endresen, P. C., Ohrem, S. J., Føre, M., Fagertun, J. T., Klebert, P., Kelasidi, E., & Bjelland, H. V. (2023). Towards a holistic digital twin solution for real-time monitoring of aquaculture net cage systems. Marine Structures, 91, 103469. doi: 10.1016/j.marstruc.2023.103469

Sujatanagarjuna, A., Kia, S., Briechle, D. F., & Leiding, B. (2023). MushR: A Smart, Automated, and Scalable Indoor Harvesting System for Gourmet Mushrooms. Agriculture, 13(8), 1533. doi: 10.3390/agriculture13081533

Sundaram, S. M., Murgod, T. R., & M, S. (2022). Digital Twins Enabling Technologies, Including Artificial Intelligence, Sensors, Cloud, and Edge Computing. IGI Global eBooks, 88—101. doi: 10.4018/978-1-6684-5925-6.ch006

Suresh, N. (2022). Affective State Recognition in Livestock—Artificial Intelligence Approaches. Animals, 12(6), 759. doi: 10.3390/ani12060759

Tsolakis, N., Bechtsis, D., & Bochtis, D. (2019). AgROS: A Robot Operating System Based Emulation Tool for Agricultural Robotics. Agronomy, 9(7), 403. doi: 10.3390/agronomy9070403

Umachandran, K., Jurčić, I., Della Corte, V., & Ferdinand-James, D. S. (2019). Industry 4.0: The New Industrial Revolution. Big Data Analytics for Smart and Connected Cities, 138—156. doi: 10.4018/978-1-5225-6207-8.ch006

Verdouw, C., Tekinerdogan, B., Beulens, A., & Wolfert, S. (2021). Digital twins in smart farming. Agricultural Systems, 189, 103046. doi: 10.1016/j.agsy.2020.103046

Wissensforum. (2020). LAND.TECHNIK 2020: The Forum for Agricultural Engineering Innovations. VDI Verlag. VDI-Berichte, 2374. doi: 10.51202/9783181023747

Wolday, K., & Hruy, G. (2015). A Review on: Performance Evaluation of Crop Simulation Model (APSIM) in Prediction Crop Growth, Development and Yield in Semi Arid Tropics. Journal of Natural Sciences Research, 5, 34—39. https://api.semanticscholar.org/CorpusID:55415141

Zhang, Y., Zhang, Y., Gao, M., Dai, B., Kou, S., Wang, X., Fu, X., & Shen, W. (2023). Digital twin perception and modeling method for feeding behavior of dairy cows. Computers and Electronics in Agriculture, 214, 108181. doi: 10.1016/j.compag.2023.108181

Zhu, S., Lu, Q., & Xiang, Y. (2021). Research Progress, Hot Spots and Prospects in the Field of Agricultural Innovation in China: CiteSpace analysis based on 2258 articles. IEEE Explore, 37—40. doi: 10.1109/DCABES52998.2021.00016